
smart contract

security

Date: 1st July 2024

Prepared for: ElectroSwap

V 1.0

ElectroSwap V3 Locker Initial Audit report 01-07-2024

About BlockApex

Founded in early 2021, is a security-first blockchain consulting firm. We offer services in a wide range
of areas including Audits for Smart Contracts, Blockchain Protocols, Tokenomics along with Invariant
development (i.e., test-suite) and Decentralized Application Penetration Testing. With a dedicated team
of over 40+ experts dispersed globally, BlockApex has contributed to enhancing the security of essential
software components utilized by many users worldwide, including vital systems and technologies.

BlockApex has a focus on blockchain security, maintaining an expertise hub to navigate this dynamic
field. We actively contribute to security research and openly share our findings with the community.
Our work is available for review at our public repository, showcasing audit reports and insights into
our innovative practices.

To stay informed about BlockApex’s latest developments, breakthroughs, and services, we invite you to
follow us on Twitter and explore our GitHub. For direct inquiries, partnership opportunities, or to learn
more about how BlockApex can assist your organization in achieving its security objectives, please
visit our Contact page at our website , or reach out to us via email at hello@blockapex.io.

BlockApex 2

https://twitter.com/@block_apex
https://github.com/BlockApex
https://www.blockapex.io/contact
mailto:hello@blockapex.io

ElectroSwap V3 Locker Initial Audit report 01-07-2024

Contents

1 Executive Summary 4
1.1 Scope . 5

1.1.1 In Scope . 5
1.1.2 Out of Scope . 6

1.2 Methodology . 6
1.3 Project Goals . 7
1.4 Status Descriptions . 8
1.5 Summary of Findings Identified . 9

2 Findings and Risk Analysis 10
2.1 Oversight in Lock Splitting Allows Users to Withdraw and Take Early Exit from the System. 10
2.2 Inflexible Liquidity Migration Settings can lead to Financial Inefficiencies. 11
2.3 EOA Authorization in migrate Function Enables Front-Running Attack. 12
2.4 migrateLock() Function is Broken Due to Data Reset Leading to Migration Failures. . . 13
2.5 Risk of Denial of Service via Unbounded loop Operations. 14
2.6 Limitations of Fixed TeamWallet Address in ElectroSwapLockerV3Migrator Contract. . 16
2.7 Lack of Event Emissions in Key Functions. 17
2.8 Fee variable should be transparent to users. 18
2.9 Non-standard Function Naming Conventions . 19
2.10 Redundant Address Casting of Variables. 20

BlockApex 3

ElectroSwap V3 Locker Initial Audit report 01-07-2024

1 Executive Summary

Our team performed a technique called Filtered Audit, where two individuals separately au-
dited the ElectroSwap V3 Locker Contracts. After a thorough and rigorous manual testing
process involving line by line code review for bugs, an automated tool-based review was carried
out. All the raised flags were manually reviewed and re-tested to identify any false positives.

BlockApex 4

ElectroSwap V3 Locker Initial Audit report 01-07-2024

1.1 Scope

1.1.1 In Scope

The audit focuses on the ElectroSwapLockerV3 and ElectroSwapLockerV3Migrator smart contracts,
which are designed for managing and migrating liquidity locks within the ElectroSwap protocol. These
contracts facilitate various functionalities related to liquidity locks and the migration of liquidity from
the V2 to the V3 protocol. Key features and functionalities of each contract are as follows:

ElectroSwapLockerV3 The ElectroSwapLockerV3 contract is responsible for managing liquidity locks
within the ElectroSwap protocol. Its primary functionalities include:

• Liquidity Lock Management: Facilitates the creation, transfer, extension, and withdrawal of
locked liquidity.

• Handling V3 Liquidity Tokens: Ensures that only eligible ElectroSwap liquidity pairs are locked.

• Fee Management: Configurable fees applicable to operations such as creating locks, with
options to pay in native and Bolt tokens.

• Access Controls: Restricts certain administrative functions to the team or contract owner, ensur-
ing secure management of critical operations.

ElectroSwapLockerV3Migrator The ElectroSwapLockerV3Migrator contract is responsible for migrat-
ing liquidity from the V2 protocol to the V3 protocol within the ElectroSwap ecosystem. Its primary
functionalities include:

• Liquidity Migration: Manages the process of migrating liquidity from V2 to V3, ensuring a
seamless transition.

• Pool and Tick Management: Initializes pools if they do not exist and handles the creation of
new positions with specified fee tiers and tick ranges.

• Access Controls: Only authorized sources can initiate migrations, ensuring that the migration
process is secure and controlled.

• Configuration Management: Allows for setting new pool defaults and managing source lockers,
ensuring flexibility in managing liquidity migration operations.

Contracts in Scope: All Files under the folder: ElectroSwapLockerV3/*

Initial Commit Hash: 4319366bd0be41d3d0d6443da95bd2b989e6c1ca

Final Commit Hash: 0b70122af538266bdd10d58f7895866c3f94c317

BlockApex 5

https://bitbucket.org/electroswap/contracts/src/4319366bd0be41d3d0d6443da95bd2b989e6c1ca/
https://bitbucket.org/electroswap/contracts/src/0b70122af538266bdd10d58f7895866c3f94c317/

ElectroSwap V3 Locker Initial Audit report 01-07-2024

Deployed Smart Contracts:

• ElectroSwapLockerV3

• ElectroSwapLockerV3Migrator

1.1.2 Out of Scope

All features or functionalities not delineated within the “In Scope” section of this document shall be
deemed outside the review of this audit. This exclusion particularly applies to the backend operations
of the ElectroSwapLockerV2 contracts associated with the platform & any other external libraries.

1.2 Methodology

The codebase was audited using a filtered audit technique. A band of two (2) auditors scanned the
codebase in an iterative process for a time spanning 1 week. Starting with the recon phase, a basic
understanding was developed, and the auditors worked on developing presumptions for the developed
codebase and the relevant documentation/whitepaper. Furthermore, the audit moved on with the
manual code reviews to find logical flaws in the codebase complemented with code optimizations,
software, and security design patterns, code styles and best practices.

BlockApex 6

https://blockexplorer.electroneum.com/address/0xfdB0d62Fc929fD53D266B969Bfe4250b205D0899/contracts#address-tabs
https://blockexplorer.electroneum.com/address/0xdD42c8886B50Dbc07b767A27ED03eA8B311f948c/contracts#address-tabs

ElectroSwap V3 Locker Initial Audit report 01-07-2024

1.3 Project Goals

The engagement was scoped to provide a comprehensive security assessment of ElectroSwapLockerV3
contract. Specifically, we sought to answer the following non-exhaustive list of questions:

1. Are there any vulnerabilities in the ElectroSwapLockerV3 contract, such as reentrancy attacks,
integer overflows/underflows, or improper input validation?

2. Does the contract ensure that only authorized entities can perform sensitive operations?
3. Are the roles and permissions correctly implemented and enforced?
4. Are the mechanisms for liquidity locking and splitting secure and resistant to potential exploits?
5. Is the fee management system implemented correctly, ensuring accurate calculations and pre-

venting abuse?
6. Are event emissions adequate for monitoring state changes and ensuring transparency in critical

operations?
7. Are there any gas optimization opportunities to improve the efficiency of the contract’s functions?
8. Is the fixed fee tier and tick range design in the contract potentially leading to suboptimal user

outcomes or financial losses?
9. Does the contract have appropriate mechanisms to update critical addresses like teamWallet to

adapt to potential future needs?

BlockApex 7

ElectroSwap V3 Locker Initial Audit report 01-07-2024

1.4 Status Descriptions

Acknowledged: The issue has been recognized and is under review. It indicates that the relevant team
is aware of the problem and is actively considering the next steps or solutions.

Fixed: The issue has been addressed and resolved. Necessary actions or corrections have been
implemented to eliminate the vulnerability or problem.

Closed: This status signifies that the issue has been thoroughly evaluated and acknowledged by the
development team. While no immediate action is being taken.

BlockApex 8

ElectroSwap V3 Locker Initial Audit report 01-07-2024

1.5 Summary of Findings Identified

BlockApex 9

ElectroSwap V3 Locker Initial Audit report 01-07-2024

2 Findings and Risk Analysis

2.1 Oversight in Lock Splitting Allows Users to Withdraw and Take Early Exit from the
System.

Severity: Critical

Status: Fixed

Location ElectroSwapLockerV3/ElectroSwapLockerV3.sol

Description :

The SplitLock function allows users to split 100% of the locked position into a new position with any
new duration of time, which can be as short as one minute.

• Attack Scenario: A user locks a position with a certain duration, say for a month, intending to
commit their liquidity for that period. After a very short period, even as soon as the next day,
the user decides to split the entire position (100% of it) into a new position. During the split,
the user sets a new lock duration for the new position, which can be as short as one minute. By
transferring all the liquidity to a new position with a minimal lock duration, the user can then
wait for this period to pass and regain full control over their liquidity, completely bypassing the
originally intended lock duration.

Proof of Concept

1 function testSplitTheSplitedLockAndUnlock() public {
2 positionManager.approve(address(lockerV3), tokenId);
3 bolt.approve(address(lockerV3), type(uint256).max);
4 lockerV3.lockPosition(tokenId, 10 days, false);
5 lockerV3.splitLock(tokenId, 100, 1 days);
6 vm.warp(block.timestamp + 1 days + 1 seconds);
7 lockerV3.unlockPosition(tokenId + 1);
8 }

Recommendation :

1. Restrict Liquidity Splitting Proportions: Restrict the amount of liquidity that can be split off
from a locked position or remove the previous lock if 100% amount is split into a new lock. For
example, limit users to splitting off only a certain percentage of the total locked liquidity at any
given time. If allowing 100% of the amount to be split into a new position, make sure to remove
the old lock.

2. Inherit Original Lock Duration: Ensure that any new position created from a split inherits the
lock duration of the original position, or at least does not allow a lock duration that ends before
the original lock's expiration.

BlockApex 10

ElectroSwap V3 Locker Initial Audit report 01-07-2024

2.2 Inflexible Liquidity Migration Settings can lead to Financial Inefficiencies.

Severity: Critical

Status: Fixed

Location ElectroSwapLockerV3/ElectroSwapLockerV3Migrator.sol

Description :

Fixed Fee Tier: The DEFAULT_FEE is set to 3000, representing a 0.3% fee tier. In Uniswap V3, pools can
have different fee tiers (e.g., 0.05%, 0.3%, 1.0%). If a corresponding V3 pool with a 0.3% fee does not
exist, the migration function would be forced to create a new pool with 0.3% fee tier. If the migration
leads to the creation of a new pool due to the fixed fee setting, it might split the liquidity and trading
volume across multiple pools, reducing potential fee earnings for all liquidity providers involved in
those pools.

Fixed Price Range (Ticks): The DEFAULT_TICK_LOWER and DEFAULT_TICK_UPPER represent very
broad price ranges which are currently defined in the contract. In Uniswap V3, liquidity providers can
select specific price ranges to provide liquidity, allowing them to concentrate liquidity and potentially
achieve higher returns. By using the range defined in migration contract, the contract may place
liquidity on a whole graph, which could be potentially no returns for the liquidity provider.

Recommendation :

Dynamic Fee and Tick Configuration: Allow users or an automated system to determine the fee, tick-
Lower, and tickUpper settings dynamically based on the current market conditions, user preferences,
or historical data. This could be achieved by passing these parameters as arguments to the migration
function.

1 function migrate(
2 address pairAddress,
3 address owner,
4 uint256 amountToMigrate,
5 uint256 lockCreated,
6 uint256 lockDuration,
7 uint24 fee,
8 int24 tickLower,
9 int24 tickUpper

10) external onlyAuthorizedSource returns (bool) {
11 // Migration logic using user-defined parameters
12 }

BlockApex 11

ElectroSwap V3 Locker Initial Audit report 01-07-2024

2.3 EOA Authorization in migrate Function Enables Front-Running Attack.

Severity: Critical

Status: Fixed

Location ElectroSwapLockerV3/ElectroSwapLockerV3Migrator.sol

Description :

The migrate() function in the ElectroSwapLockerV3Migrator contract performs critical operations to
migrate liquidity, which includes several steps. Only an AuthorizedSource can migrate liquidity due to
the access modifier. Consider if a whitelisted source could be an externally owned account (EOA) rather
than a contract; it opens up potential front-running risks. The EOA or any authorized source needs to
transfer the required LP tokens to this contract before invoking migrate(). A malicious actor could
see a migrate transaction before it is confirmed and attempt to place their transaction before that. An
attacker can potentially use the user's deposited LPs to create his position, and the user's transaction
will fail due to the check IERC20(pairAddress).balanceOf(address(this)) >= amountToMigrate. This
requires careful coordination between the token transfer and the migration transaction, which can be
error-prone and potentially manipulated by other observers on the network.

Recommendation :

Limit the onlyAuthorizedSource whitelist to only include smart contracts rather than EOAs. This
approach leverages contract code to enforce additional checks and validations, and logic that can
reduce the risk.

BlockApex 12

ElectroSwap V3 Locker Initial Audit report 01-07-2024

2.4 migrateLock() Function is Broken Due to Data Reset Leading to Migration Failures.

Severity: High

Status: Fixed

Location ElectroSwapLockerV3/ElectroSwapLockerV3.sol

Description :

In the migrateLock function, the lockInfo variable is a reference to a storage slot corresponding
to lockedPositions[tokenId]. This means lockInfo is directly pointing to the storage location of
the lock information for the given tokenId. When the migrateLock function deletes the lockedPo-
sitions[tokenId], it sets the entire storage slot to its default values, which for a struct would be the
default values for each of its fields. This means that after this operation, all fields in lockInfo (such as
lockInfo.pool, lockInfo.owner, lockInfo.created, and lockInfo.duration) would be reset to their
respective default values (e.g., address(0) for addresses, 0 for uints). When migrator.migrate(.. .) is
called, all the arguments passing are essentially zero or default values for all the parameters that are
derived from lockInfo. This would likely result in the migration function not performing as intended.

Proof of Concept

1 function testMigratLock() public {
2 lockerV3._setMigrator(address(lockerV3Migrator));
3 positionManager.approve(address(lockerV3), tokenId);
4 bolt.approve(address(lockerV3), type(uint256).max);
5 lockerV3.lockPosition(tokenId, 10 days, false);
6 vm.warp(block.timestamp + 11 days);
7 vm.expectRevert();
8 lockerV3.migrateLock(tokenId);
9 }

Results

1 ElectroSwapLockerV3Migrator::migrate(0x00, 0
x00, 743699 [7.436e5], 0, 0)

2 revert: Cannot migrate matured locks, withdraw instead
3 ()

Recommendation :

Move the delete lockedPositions[tokenId] operation to after the migration has been successfully
completed.

BlockApex 13

ElectroSwap V3 Locker Initial Audit report 01-07-2024

2.5 Risk of Denial of Service via Unbounded loop Operations.

Severity: Medium

Status: Closed

Location ElectroSwapLockerV3/ElectroSwapLockerV3.sol

Description :

The current implementation of removeLockId() utilizes arrays (ownerToLocks and poolToLocks)
to manage lock IDs associated with owners and pools. This design requires iterating over potentially
large arrays to find and remove specific lock IDs. When the array size becomes large, the iteration
process can consume a significant amount of gas. In scenarios where the array is extremely large, the
gas required for a single operation such as removing a lock ID might exceed the block gas limit. This
can lead to transactions that consistently fail due to hitting these limits, effectively causing a Denial of
Service (DoS).

Recommendation :

It is recommended to switch from using arrays to mappings for managing lock IDs. Mappings provide
constant time complexity for adding, removing, and checking the existence of elements, which makes
gas costs predictable and independent of the number of items managed.

Data Structure: Utilize a nested mapping structure where each address maps to another mapping,
which then maps lock IDs to a boolean or a struct indicating the presence and status of the lock.

1 mapping(address => mapping(uint256 => bool)) private lockIsActive;

Adding Lock IDs: Simply set the value in the nested mapping to true when a lock is added

1 lockIsActive[_address][_lockId] = true;

Removing Lock IDs: Set the value to false when a lock is removed.

1 lockIsActive[_address][_lockId] = false;

Checking Existence: Check the status of a lock ID in constant time by referencing the mapping.

1 bool isActive = lockIsActive[_address][_lockId];

Implementing the mapping eliminates the risk of exceeding block gas limits, as there is no need for
iteration over elements.

BlockApex 14

ElectroSwap V3 Locker Initial Audit report 01-07-2024

Developer Response: Suggested implementation breaks other requirements (getLockIdsByOwner,
getLockIdsByPool) with no easy work around. Extremely unlikely to occur as in most cases there's only
1-2 locks per liquidity pair/pool. Expired locks reduce size of array, so it will only represent active locks.
For these reasons and the very low chances of occuring, leaving as-is.

Auditor Response We understand the decision to leave as it is due to the low likelihood of occurrence.

BlockApex 15

ElectroSwap V3 Locker Initial Audit report 01-07-2024

2.6 Limitations of Fixed TeamWallet Address in ElectroSwapLockerV3Migrator
Contract.

Severity: Low

Status: Fixed

Location ElectroSwapLockerV3/ElectroSwapLockerV3.sol

Description :

In the ElectroSwapLockerV3Migrator contract, the teamWallet address is set during the construction
of the contract and is not modifiable afterward. This design lacks flexibility and does not account for
scenarios where changing the wallet address may be necessary, such as:

• Security breaches where the private keys of the current wallet are compromised.

• Organizational changes that require transitioning financial operations to a new wallet.

• Upgrading to a more secure wallet setup, such as a multi-signature wallet for better control and
security.

Recommendation :

Implement a function that allows changing the teamWallet. Ensure that this function can only be called
by the current teamWallet or through a governance mechanism that involves multiple stakeholders to
prevent unauthorized access.

1 event TeamWalletUpdated(address indexed oldWallet, address indexed newWallet);
2
3 function setTeamWallet(address payable newWallet) external onlyTeam {
4 require(newWallet != address(0), "Invalid address");
5 emit TeamWalletUpdated(teamWallet, newWallet);
6 teamWallet = newWallet;
7 }

BlockApex 16

ElectroSwap V3 Locker Initial Audit report 01-07-2024

2.7 Lack of Event Emissions in Key Functions.

Severity: Info

Status: Fixed

Description :

Several functions in the ElectroSwapLockerV3 and ElectroSwapLockerV3Migrator contracts perform
significant state-changing actions but do not emit events. For reference.

ElectroSwapLockerV3: _setFees() _setTeamWallet() _updateFeeWhitelist() _setMigrator()

ElectroSwapLockerV3Migrator: _setLocker() _setSourceLocker() migrate()

Recommendation :

Add events to these functions to log important state changes for better transparency and tracking.

BlockApex 17

ElectroSwap V3 Locker Initial Audit report 01-07-2024

2.8 Fee variable should be transparent to users.

Severity: Info

Status: Fixed

Location ElectroSwapLockerV3/ElectroSwapLockerV3/sol

Description :

The fees variable in the ElectroSwapLockerV3 contract is set to private, making the fee structure
inaccessible to anyone outside the contract. This lack of accessibility prevents users from viewing or
verifying the applied fees.

Code Affected

1 Fees private fees;

Recommendation :

Change the visibility of the fees variable from private to public to enhance transparency.

BlockApex 18

ElectroSwap V3 Locker Initial Audit report 01-07-2024

2.9 Non-standard Function Naming Conventions

Severity: Info

Status: Fixed

Description :

In the ElectroSwapLockerV3 and ElectroSwapLockerV3Migrator contract, several external functions
start with underscore in their names. This practice is typically reserved for internal or private functions
in Solidity, can lead to confusion.

ElectroSwapLockerV3 _setFees _setTeamWallet _updateFeeWhitelist _setMigrator

ElectroSwapLockerV3Migrator _setLocker _setSourceLocker

Recommendation :

Rename these external functions to remove the leading underscore, adhering to standard naming
conventions for better readability and clarity.

BlockApex 19

ElectroSwap V3 Locker Initial Audit report 01-07-2024

2.10 Redundant Address Casting of Variables.

Severity: Info

Status: Fixed

Location ElectroSwapLockerV3/ElectroSwapLockerV3.sol

Description :

In the lockPosition function of the ElectroSwapLockerV3 contract, the addresses boltAddress and
msg.sender are unnecessarily typecast to the address type.

Code Affected

1 TransferHelper.safeTransferFrom(address(boltAddress), address(msg.sender), deadAddress, (
fees.boltFlatFee * 1e18));

Recommendation :

Remove the unnecessary typecasting.

BlockApex 20

ElectroSwap V3 Locker Initial Audit report 01-07-2024

Disclaimer:

The smart contracts provided by the client with the purpose of security review have been thoroughly
analyzed in compliance with the industrial best practices till date w.r.t. Smart Contract Weakness
Classification (SWC) and Cybersecurity Vulnerabilities in smart contract code, the details of which are
enclosed in this report.

This report is not an endorsement or indictment of the project or team, and they do not in any way
guarantee the security of the particular object in context. This report is not considered, and should not
be interpreted as an influence, on the potential economics of the token (if any), its sale, or any other
aspect of the project that contributes to the protocol’s public marketing.

Crypto assets/ tokens are the results of the emerging blockchain technology in the domain of decentral-
ized finance and they carry with them high levels of technical risk and uncertainty. No report provides
any warranty or representation to any third-party in any respect, including regarding the bug-free
nature of code, the business model or proprietors of any such business model, and the legal compliance
of any such business. No third party should rely on the reports in any way, including to make any
decisions to buy or sell any token, product, service, or asset. Specifically, for the avoidance of doubt,
this report does not constitute investment advice, is not intended to be relied upon as investment
advice, is not an endorsement of this project or team, and is not a guarantee as to the absolute security
of the project.

Smart contracts are deployed and executed on a blockchain. The platform, its programming language,
and other software related to the smart contract can have vulnerabilities that can lead to hacks. The
scope of our review is limited to a review of the programmable code and only the programmable code,
we note, as being within the scope of our review within this report. The smart contract programming
language itself remains under development and is subject to unknown risks and flaws. The review
does not extend to the compiler layer or any other areas beyond the programming language’s compiler
scope that could present security risks.

This security review cannot be considered a sufficient assessment regarding the utility and safety of
the code, bug-free status, or any other statements of the contract. While BlockApex has done their best
in conducting the analysis and producing this report, it is important to note that one should not rely
on this report only - we recommend proceeding with several independent code security reviews and a
public bug bounty program to ensure the security of smart contracts.

BlockApex 21

	Executive Summary
	Scope
	In Scope
	Out of Scope

	Methodology
	Project Goals
	Status Descriptions
	Summary of Findings Identified

	Findings and Risk Analysis
	Oversight in Lock Splitting Allows Users to Withdraw and Take Early Exit from the System.
	Inflexible Liquidity Migration Settings can lead to Financial Inefficiencies.
	EOA Authorization in migrate Function Enables Front-Running Attack.
	migrateLock() Function is Broken Due to Data Reset Leading to Migration Failures.
	Risk of Denial of Service via Unbounded loop Operations.
	Limitations of Fixed TeamWallet Address in ElectroSwapLockerV3Migrator Contract.
	Lack of Event Emissions in Key Functions.
	Fee variable should be transparent to users.
	Non-standard Function Naming Conventions
	Redundant Address Casting of Variables.

